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Abstract
Sulforaphane belongs to the active class of isothiocyanates capable of delivering 
various biological benefits for health promotion and disease prevention. This com-
pound is considered vital to curtail numerous metabolic disorders. Various studies 
have proven its beneficial effects against cancer prevention and its possible utiliza-
tion	as	a	therapeutic	agent	in	cancer	treatment.	Understanding	the	mechanistic	path-
ways and possible interactions at cellular and subcellular levels is key to design and 
develop cancer therapeutics for humans. In this respect, a number of mechanisms 
such as modulation of carcinogen metabolism & phase II enzymatic activities, cell 
cycle arrest, activation of Nrf2, cytotoxic, proapoptotic and apoptotic pathways have 
been reported to be involved in cancer prevention. This article provides sufficient 
information by critical analysis to understand the mechanisms involved in cancer pre-
vention attributed to sulforaphane. Furthermore, various clinical studies have also 
been included for design and development of novel therapies for cancer prevention 
and cure.

Practical applications
Diet and dietary components are potential tools to address various lifestyle- related 
disorders. Due to plenty of environmental and cellular toxicants, the chances of cancer 
prevalence	are	quite	large	which	are	worsen	by	adopting	unhealthy	lifestyles.	Cancer	
can	be	treated	with	various	therapies	but	those	are	acquiring	side	effects	causing	the	
patients to suffer the treatment regime. Nutraceuticals and functional foods provide 
safer options to prevent or delay the onset of cancer. In this regard, sulforaphane is 
a pivotal compound to be targeted as a potential agent for cancer treatment both in 
preventive and therapeutic regimes. This article provides sufficient evidence via dis-
cussing the underlying mechanisms of positive effects of sulforaphane to further the 
research for developing anticancer drugs that will help assuage this lethal morbidity.
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1  | INTRODUC TION

Fruits and vegetables are rich sources of dietary antioxidants capa-
ble of scavenging free radicals and protecting the body from cellular 
damage (Naz et al., 2019). Furthermore, certain phytochemicals are 
bioactive compounds which can also be used for the treatment of 
various diseases when used as nutraceuticals in conjunction with 
routine therapies (Nalini et al., 2020; Nwanodi, 2017). In this respect, 
plant- based foods are considered an important part of a regular diet 
to	 ameliorate	 various	 lifestyle-	related	disorders	 (Haq	et	 al.,	 2019).	
Furthermore, diet practitioners endorse the use of fresh fruits and 
vegetables in everyday meals to prevent from metabolic disparities 
(Haq	et	al.,	2020;	Imran	et	al.,	2020).	Several	factors	such	as	smok-
ing, consumption of alcohol, sedentary lifestyle, unhealthy diet, and 
drug abuses are involved in escalating global burden of diseases es-
pecially	cancer	at	alarming	rate.	Attributable	to	such	lifestyle	prac-
tices, it is being estimated that deaths due to cancer insurgence may 
rise 21.6 million new cases and 13 million deaths by the year 2030 
(Fidler	 et	 al.,	 2018).	 According	 to	World	 Health	 Organization,	 9.6	
million	cancer-	based	deaths	are	reported	worldwide	(WHO,	2018).	
However,	such	rate	of	morbidity	and	mortality	may	be	avoided	by	
adopting healthy lifestyle practices like consumption of diets rich in 
bioactive compounds, regular exercise for active lifestyle, and avoid-
ing	tobacco	and	other	drug	abuses	(Colditz	et	al.,	2012;	Mandrich	&	
Caputo,	2020).

Numerous studies have revealed both preventive and curative 
effects	of	phytochemicals	against	oncogenesis	(Chikara	et	al.,	2018;	
Imran	et	al.,	2020;	Ruiz	&	Hernández,	2016).	Pharmaceutics	may	pro-
vide efficient results in disease treatment but there may be some 
side	effects	associated	with	them.	However,	natural	bioactive	com-
pounds have been found to be safer in nature compared to synthetic 
pharmaceutics (Nalini et al., 2020). Nevertheless, prevention from 
diseases as a proactive approach is always better than countering 
the	 medical	 conditions	 (Haq	 et	 al.,	 2020).	 Moreover,	 provision	 of	
bioactive moieties via diet is easier and non- corrosive in routine to 
prevent	diseases	than	taking	drug	and	radiation	therapy	(Minich	&	
Bland, 2007). Further, dietary approaches are more practical, in-
expensive, and tolerable for individuals to avoid onset of diseases 
and	 also	 may	 not	 involve	 discomforts	 (Calin	 &	 Croce,	 2006;	 Haq	
et	al.,	2020;	Minich	&	Bland,	2007;	Nalini	et	al.,	2020).	It	has	been	
seen that phytochemicals with significant disease prevention per-
spectives can potentially reduce the overall burden of diseases in a 
community	(Haq	et	al.,	2020).

Sulforaphane (SFN), an isothiocyanate, is one such compound 
that holds a pivotal role in avoiding oncogenic events alongside pro-
viding enough safety to the normal cells. SFN is primarily obtained 
from cruciferous vegetables such as cabbage, broccoli, cauliflower, 
and brussels sprouts upon enzymatic hydrolysis of glucoraphanin 
(Yang et al., 2016). Generally, glucosinolates are hydrolyzed by the 
myrosinase enzyme (thioglucoside glycohydrolase) resulting in the 
production of organic aglycone moieties (Bartnik & Facey, 2017). 
Various epidemiological studies have identified a lower risk of cancer 
incidence among the individuals consuming cruciferous vegetables 

which	are	the	principal	source	of	SFN	(Abbaoui	et	al.,	2018;	Palliyaguru	
et al., 2018; Soundararajan & Kim, 2018; Vanduchova et al., 2019). 
One of the researches has endorsed the safe status of SFN where 
a dose of 3 g/kg b.w. day−1	of	broccoli	 seed	extract	 (BSE)	has	not	
shown any adverse genotoxic effect and sperm abnormality during 
30 days trial. Further, its LD50 was found to be >10 g/kg b.w. day−1 
for	30	days.	Hence,	routine	use	of	broccoli	or	its	extract	in	food	items	
could be practiced considering its safe nature (Zhou et al., 2015).

Over the past few decades, SFN has grabbed the attention of 
researchers in clinical studies for cancer chemoprevention due to 
its natural ability as a potent inducer of phase II enzymes (Fuentes 
et	 al.,	 2016;	 Kwak	 et	 al.,	 2001;	 Yanaka	 et	 al.,	 2019).	 However,	
SFN is also recognized to possess biphasic behavior representing 
hormetic effects where it enhances certain metabolic functions at 
low	doses	while	 inhibiting	 them	at	higher	doses	 (Bao	et	al.,	2014).	
Nevertheless, for effective use of phytochemicals against cancer 
treatment, their mechanistic pathways should be understood with 
respect to bioavailability, metabolism, and nutraceutical effects at 
cellular and subcellular levels. In this way, an effective dietary reg-
imen could be designed to prevent cancer onset and/or delay the 
already prevailing cancer cells in the body. Previous research studies 
have highlighted the cellular mechanisms of SFN with different types 
of	cancers.	Hence,	this	article	substantially	deals	with	understand-
ing and elaborating the mechanisms underlying cancer prevention 
by SFN in order to depict a clear picture for future studies along with 
designing and developing therapeutic measures using this important 
anticancer agent.

2  | SULFOR APHANE: PHY TOCHEMISTRY, 
BIOAVAIL ABILIT Y,  AND METABOLISM

SFN is a biologically active phytochemical belonging to a diverse 
class	 of	 isothiocyanates	 derived	 from	 glucosinolates.	 Chemically,	
SFN	 is	 1-	isothiocyanato-	4-	(methylsulfinyl)butane	 with	 a	 linear	
chemical	 expression	 of	 CH3–	SO–	(CH2)4–	N=C=S (Vanduchova 
et al., 2019). In plant cells, SFN is stored in the form of glucoraphanin 
which is its stable precursor (Lucarini et al., 2018). It is highly concen-
trated in the reproductive organs like seeds & inflorescence, young 
leaves, roots, and mature leaves. Glucoraphanin is a glucosinolate 
and converted to SFN upon catalysis by myrosinase as detailed later. 
Glucosinolate- myrosinase system provides a defense mechanism to 
the plant, when it is attacked by pathogens or when a damage occurs 
to	the	cells	via	other	means.	When	plant	parts	containing	these	are	
damaged, chopped, or chewed, the myrosin cells release myrosinase 
that catalyzes hydrolytic reaction with glucosinolates yielding SFN. 
Being highly reactive upon interaction, myrosinase and glucorapha-
nin are spatially separated by storing into different cellular compart-
ments (Yang et al., 2016).

Metabolically,	 SFN	 is	 a	 hydrolytic	 product	 of	 its	 glucosinolate	
precursor, i.e., glucoraphanin found in plants of cruciferous family. 
A	 glycone	 molecule	 is	 cleaved	 from	 glucosinolate	 (glucoraphanin)	
via reaction catalyzed by β- thioglucosidase namely myrosinase 
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(Figure 1). This enzyme yields glucose, hydrogen sulfate, and agly-
cones upon cleavage of glucosinolate. The production of aglycones 
is dependent upon type of glucosinolate, availability of ion, and re-
action	pH.	The	stable	isothiocyanates	such	as	SFN	are	produced	as	
hydrolysis	products	at	high	or	neutral	pH	(Bones	&	Rossiter,	1996).

SFN is principally metabolized via the mercapturic acid path-
way	 after	 absorption.	 A	 dithiocarbamate-	glutathione	 (GSH)	 con-
jugate	 is	 formed	when	 the	 sulfhydryl	 group	 of	 GSH	 reacts	 with	
electrophilic central carbon of – N=C=S group. Due to this elec-
trophilic central carbon, SFN possesses high chemical reactivity 
making it readily react to sulfur, nitrogen, and oxygen- centered 
nucleophiles (Yagishita et al., 2019). Furthermore, with electro-
philic central carbon and a lack of aromatic groups, SFN behaves as 
a water- soluble compound and possesses better pharmacological 
activity	at	neutral	pH	of	the	intestine	(Mokhtari	et	al.,	2018).	Since	
the glutathione transferase (GST) enzymes are involved in cata-
lyzing this conjugation reaction with SFN, the polymorphism may 
play	a	significant	impact	on	isothiocyanate	metabolism.	Moreover,	
self- metabolism may also be induced by SFN via induction of 
glutathione- S- transferases. Finally, the SFN is converted to SFN- 
cysteine and ultimately to SFN- N- acetylcysteine by successive 
cleavage reactions catalyzed by γ- glutamyl transpeptidase, cyste-
inglycinase, and N- acetyltransferase, respectively, as depicted in 
Figure 2 (Vanduchova et al., 2019).

However,	SFN	 is	not	 the	only	hydrolysis	product	of	glucosino-
lates but a sufficient amount of these precursors is converted to 
nitrile	 and	 its	 products.	At	 higher	 pH	or	 in	 presence	 of	 Fe2+ ions, 
this conversion is increased by epithiospecifier protein present in 
broccoli. Such nitrile products do not deliver major physiological 
benefits owing to their biologically inert nature. In this way, most 
of the studies designed to check the effects of SFN from vegetable 
having higher amounts of epithiospecifier protein may not observe 
physiological benefits. It has been reported that epithiospecifier 
protein may result in nine times higher production of inactive ni-
trile	than	 isothiocyanates	 (Matusheski	et	al.,	2004,	2006;	Williams	
et al., 2008). The cleavage of glucosinolates to various components 
is demonstrated in Figure 3.

SFN can deliver cancer- preventive effects only when sufficiently 
absorbed and available in biologically active form in the body after 
consumption. In this respect, various factors affect the absorption 
and bioactivation of glucosinolates. The hydrolysis of glucoraphanin 
to produce SFN by the action of myrosinase plays a critical role as 
the mammalian biological system does not have this enzyme and it is 
only reported to be present in plant cells (Vanduchova et al., 2019). 
Furthermore, it is reported that apart from plant cells, gut micro-
flora also has the ability to transform glucosinolates to SFN (Yang 
et al., 2016).

The type of isothiocyanates is also crucial as these are consid-
ered	vital	in	delivering	anticancer	effects.	As	mentioned	earlier,	pH	
and	presence	of	 ions	also	affect	 the	production	of	SFN.	As	 far	 as	
the processing of foods is concerned, myrosinase present in differ-
ent cruciferous vegetables is a heat- labile enzyme, thus cooking may 
reduce its activity. It has further been observed that epithiospeci-
fier protein and myrosinase have different temperature tolerances. 
The myrosinase may work effectively when exposed to mild heat 
treatment (60– 70℃) but epithiospecifier protein cannot withstand 
this temperature and hence higher production of isothiocyanates 
is	 expected	 instead	 of	 inactive	 nitrile	 products.	 However,	 much	
of the evidences are available showing a lack of SFN bioavailabil-
ity	from	cooked	broccoli.	 It	has	been	noticed	that	optimum	pH	for	
SFN	production	 ranged	between	5	and	6	and	at	14–	25℃ (Dosz & 
Jeffery, 2013). In a nutshell, SFN may not be biologically available 
when cruciferous vegetables are cooked at higher temperatures, but 
mild	heat	treatment	may	accelerate	SFN	production	(Figure	4).

3  | SULFOR APHANE- A SSOCIATED 
MOLECUL AR TARGETS FOR C ANCER 
PRE VENTION

Using	SFN-	enriched	designer	foods	or	nutraceuticals	as	a	therapeu-
tic measure against cancer may involve sufficient clinical evidences 
before being used in routine therapies. Researchers use various 
tools to identify anticancer perspectives of bioactive compounds 

F I G U R E  1  Conversion	of	glucoraphanin	to	sulforaphane
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involving activation of nuclear factor erythroid 2- related factor 2 
(Nrf2) cell signaling pathway, modulation of xenobiotic pathways 
and epigenetic regulation. Nrf2 signaling pathway is of critical im-
portance in biological cells where it regulates and controls the de-
toxification mechanisms of the environmental stress inducers (Yang 
et al., 2016). In normal conditions, Nrf2 transcription factor is held by 
Keap1	in	cytoplasm	facilitating	its	successive	degradation	via	ubiq-
uitination followed by proteolysis by 26S proteasomal complex (Itoh 
et	al.,	1999;	Zhang	et	al.,	2004).	Under	stressed	conditions,	nascent	
Nrf2 is translocated to the nucleus due to interruption in proteolysis. 
Nrf2	then	binds	to	antioxidant	response	element	sequences	present	
at the cytoprotective genes that encode for proteins and enzymes 

for regulation of redox homeostasis. In this way, the oxidative stress 
and other toxicants are diminished (Osburn et al., 2008; Slocum & 
Kensler, 2011; Yates et al., 2009) (Figure 5).

Hence,	 compounds	 capable	 of	 inducing	 Nrf2	 signaling	 path-
way may avoid mutagenic, carcinogenic, and toxic events at cellular 
scales. In this context, SFN has been recognized as one of the po-
tential natural compounds capable of inducing Nrf2 signaling path-
way	(Dinkova-	Kostova	et	al.,	2002;	Zhang,	2000).	Although	multiple	
domains	of	Kaep1	are	modified	 (Hong	et	 al.,	 2005),	 SFN	primarily	
targets cysteine 151 in Keap1 because the Keap1 is a cysteine- rich 
protein	 (Hu	et	al.,	2011).	This	region	 is	a	major	point	for	modifica-
tion	by	SFN	ultimately	disturbing	the	association	of	Cul3	ubiquitin	

F I G U R E  2  Metabolism	of	sulforaphane

F I G U R E  3   Break down of glucosinolates into different fractions
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proteasome that stabilizes the Nrf2 which then translocated to the 
nucleus to induce transcription of target genes as mentioned ear-
lier	(Hu	et	al.,	2006).	It	is	worth	mentioning	that	when	the	cysteine	
151 in Keap1 is mutated with serine, the nuclear concentrations and 
subsequent	 induction	of	targeted	genes	are	abrogated	by	the	SFN	
(Takaya et al., 2012).

It has also been revealed that SFN affects the xenobiotic me-
tabolism	 via	 modulating	 actions	 of	 cytochrome	 P450	 (CYP)	 en-
zymes (Yang et al., 2016). The modulation of these enzyme may 
include inhibition or up- regulation of some enzymes like inhibi-
tion	 of	 CYP1A1	 and	 CYP1A2	 (Skupinska	 et	 al.,	 2009),	 CYP1B1	
(Licznerska	et	al.,	2015),	CYP2B1/2	 (Hu	et	al.,	2006)	&	CYP3A4	
(Mahéo	 et	 al.,	 1997),	 and	 up-	regulation	 of	 CYP1A2	 (Licznerska	
et al., 2015) in different cell models. The possible cross- talk be-
tween	Nrf2	and	aryl	hydrocarbon	(Ahr)	receptor	pathways	is	being	
considered as an underlying mechanism involved in the modifica-
tion	of	CYP	enzyme	expressions;	however,	the	actual	mechanisms	
are	 still	 not	 clear	 (Wakabayashi	 et	 al.,	 2010).	Accelerated	 apop-
tosis has also been induced by SFN in different types of cancers. 
This observation is majorly seen when high concentrations of 
SFN	 are	 used	 for	 treatment	 (Kanematsu	 et	 al.,	 2010;	Misiewicz	
et al., 2005; Pledgie- Tracy et al., 2007). Different studies have re-
ported various mechanisms for cancer prevention and/or delaying 
attributed to SFN such as inhibition of mitotic progression, tubu-
lin	polymerization	(Jackson	&	Singletary,	2004),	adipogenic	differ-
entiation, tumor formation, cancer cell migration (Li et al., 2013), 
cancer stem cells (Li et al., 2010), suppression of vascular adhesion 
molecule- 1 expression (Kim et al., 2012), elimination of advanced 
cancer	 stem	 cells	 (Labsch	 et	 al.,	 2014),	modulation	 of	 estrogen-	
DNA	adducts	(Yang	et	al.,	2013),	and	epigenetic	modifications	(Su	
et	al.,	2014).

Recently, epigenetic regulation by the bioactive compound is 
being addressed as a major tool to target cancer prevention. The 
principle benefit of epigenetic regulation is that it does not affect 
the	 DNA	 sequence;	 however,	 the	 genetic	 expression	 is	 modified	
with	additional	heritable	properties	 (Waddington,	2012).	 It	has	re-
cently	been	reported	that	SFN	increased	the	Nrf2	mRNA	expression	
and	reduced	the	methylation	of	1st	15	CpGs	of	Nrf2	gene	promoter.	
Furthermore,	protein	expression	of	histone	deacetylase	(HDAC)	and	
DNA	methyltransferases	 (DNMTs)	 was	 decreased	 when	 SFN	 was	
administered	(Su	et	al.,	2014).	It	has	also	been	noticed	that	sulfora-
phane	inhibits	the	human	telomerase	reverse	transcriptase	(hTERT)	
expression	(Meeran	et	al.,	2010).	Other	studies	have	also	concluded	
that SFN regulates genetic expression via lowering the methylation 
&	HDAC	activities	and	induction	of	acetylated	histones	on	promo-
tors	of	P21	and	bax	genes	(Myzak	et	al.,	2006,	2007).	Such	diversity	
of actions attributed to SFN makes it a potent anticancer agent for 
clinical manifestations (Figure 6).

4  | POTENTIAL EFFEC TS OF 
SULFOR APHANE AGAINST DIFFERENT 
C ANCERS

Various research works indicate beneficial impacts of SFN against 
wide-	ranging	 forms	 of	 cancers	 (Ferreira	 et	 al.,	 2018;	 Mazarakis	
et	al.,	2019;	Mokhtari	et	al.,	2018).	The	Brassicaceae (Cruciferae) fam-
ily among the cruciferous vegetables are known for high concentra-
tion of glucosinolates, which are later metabolized to isothiocyanate 
compounds. SFN is a highly potent variant of isothiocyanate, exhibit-
ing anti- carcinogenic activity in cells with multiple targeted mecha-
nisms	as	described	earlier	(Mokhtari	et	al.,	2018).	Different	pathways	

F I G U R E  4   Some isothiocyanates possessing anticancer potential
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are targeted by SFN to diminish, reverse, or to completely block the 
harmful	effects	of	 carcinogens.	Epidemiological	 research	 indicates	
an inverse pattern of dietary intake of Brassicaceae family and can-
cer	risks	(López-	García	et	al.,	2020;	Mandrich	&	Caputo,	2020;	Ruiz	
&	Hernández,	2016;	Šamec	&	Salopek-	Sondi,	2019).	The	epidemio-
logical studies related to cruciferous vegetables consumption and 
their relations with risk of different types of cancers are outlined 
in	 Table	 1.	Most	 of	 these	 studies	 have	 shown	 an	 inverse	 associa-
tion between consumption of cruciferous vegetables and onset of 
different	 types	 of	 cancers.	 However,	 in	 some	 studies	 no	 or	weak	

association between cancer prevention and consumption of cru-
ciferous vegetables has also been reported which could possibly 
be due to different factors influencing the etiology of the disease. 
Hence,	a	meta-	analysis	of	such	studies	may	depict	a	wider	and	better	
picture for endorsing the inverse relation.

Recent research has demonstrated the affectivity of isothiocy-
anate SFN against different kinds of cancer, consisting mainly of 
cystic carcinomas, ovarian cancer, liver cancer, bladder cancer, and 
colorectal	 cancer	 (Kim	 et	 al.,	 2017;	 Leone	 et	 al.,	 2017;	 Mokhtari	
et al., 2018; Tsai et al., 2019). It is reported that SFN regulates the 

F I G U R E  5   Sulforaphane targets Keap1 and Nrf2 pathways (in normal conditions, Nrf2; transcription factor is held by Keap1 in cytoplasm 
facilitating	its	successive	degradation	via	ubiquitination	followed	by	proteolysis	by	26S	proteasomal	complex	whereas	under	stressed	
conditions, nascent Nrf2 is translocated to the nucleus due to interruption in proteolysis. Nrf2 then binds to antioxidant response element 
sequences	present	at	the	cytoprotective	genes	that	encode	for	proteins	and	enzymes	for	regulation	of	redox	homeostasis	hence	managing	
the oxidative stress)
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phase II detoxification enzymes, causes cell cycle arrest, and induces 
apoptosis (Lewinska et al., 2017). Its chemoprotective functions 
are delivered through both “blocking” and “suppressing” effects 
on carcinogens (Li et al., 2018). Furthermore, it also enhances the 
radio- sensitivity of the tumor cells and prevents the oxidative 
stress-	induced	injury	(Nalini	et	al.,	2020).	Cytotoxic	effects	of	SFN	
are delivered via complex mechanisms where ROS generation re-
sults in improving apoptosis and the autophagy of the targeted cell 
(Fimognari	et	al.,	2012).	Higher	concentration	of	SFN	is	associated	
with extensive pancreatic cancer cell death. This ROS generation is 
also followed by mitochondrial membrane potential disruption that 
results	 in	 cytochrome	 c	 cytosolic	 release	 cleaving	 the	 poly-	ADP-	
ribose polymerase and apoptosis (Singh et al., 2005). Some major 
isothiocyanates	(ITCs)	delivering	anticancer	effects	are	presented	in	
Figure	4.	The	flavonoids	present	 in	Brassicaceae family (flavonoids, 
phenolic	acids,	and	total	polyphenol	content	(kaempferol,	quercetin	
glycosides, and hydrocinnamic acid esters)) also provide protective 
effects	against	cancers	(Abotaleb	et	al.,	2019;	Ibrahim	et	al.,	2018).	
Table 2 summarizes various studies conducted on different types of 
cancers, their physiological effects along with mechanisms adopted 
and clinical trials. The effects of sulforaphane in different targeted 
cancerous cells are detailed as under.

4.1 | Blood cancer/Leukemia

Leukemia is characterized by increased myeloid cells in bone marrow 
that lack maturation resulting in hematopoietic insufficiency. In het-
erogeneous hematopoietic malignancies, leukemia is one of the lead-
ing	causes	of	cancer-	associated	deaths.	Epidemiological	researches	
suggest a reversed relationship between cancer incidence and the 
dietary consumption of sulforaphane obtained from cruciferous 

vegetables (Bosetti et al., 2012). SFN is recognized as a potent an-
ticancer agent that not only reduces the cancer risk but also results 
in weak metastasis of tumors (Lin et al., 2012). It demonstrates an-
ticancer properties as well as neuro- protective (Tarozzi et al., 2013), 
cardio-	protective	(Guerrero-	Beltrán	et	al.,	2012),	anti-	inflammatory	
(Briones-	Herrera	et	al.,	2018),	and	exhibits	pleiotropic	potential	as	a	
nutraceuticals component (Prata et al., 2018).

Multiple	 mechanisms	 of	 SFN	 are	 being	 researched	 on	 to	 tar-
get different carcinogenetic cells. Some reports suggest that SFN 
tumor inhibition by preventing the phase I enzymes activation 
(Mokhtari	 et	 al.,	 2018)	 along	with	 the	 provocation	 of	 detoxifica-
tion	enzymes	 (Mokhtari	et	al.,	2017).	Similarly,	SFN	also	prevents	
cancerous cell proliferation by modification of genes that are in-
volved in apoptotic mechanisms and arrest of cell cycle (Briones- 
Herrera	et	al.,	2018;	Mokhtari	et	al.,	2017),	 in	angiogenesis	 (Bertl	
et al., 2006; Kim et al., 2015), and in metastasis (Jee et al., 2011; Lee 
et al., 2015). SFN has also demonstrated the cytotoxic effects in the 
treatment	of	HL-	60	and	also	in	case	of	acute	lymphoblastic	leuke-
mia cells, where it triggers apoptosis or cell cycle arrest (Jakubikova 
et	 al.,	 2005;	Moon	 et	 al.,	 2009).	 Likewise,	 a	 study	 conducted	 on	
human	erythromegakaryocytic	cell	 line	B1647	(acute	myeloid	leu-
kemia) also demonstrated anticancer potential of SFN acting mainly 
on	AQP8	 functions,	without	 deteriorating	 the	normal	 cells	 (Prata	
et al., 2018).

A	plethora	of	research	have	reported	the	importance	of	non-	
coding	RNAs	(microRNA/miRNA)	which	play	a	vital	role	in	patho-
logical pathways and regulate 30% of human protein- encoding 
genes	(Tsuchiya	et	al.,	2006).	The	disturbance	in	miRNA	results	in	
impairment of differentiation at cellular level, division, apoptosis, 
and therefore resulting into the formation of different cancer-
ous	cells	(Deschler	&	Lübbert,	2006;	Peng	&	Croce,	2016;	Zhang	
et	al.,	2007).	SFN	is	claimed	to	modulate	the	miRNA	expression	

F I G U R E  6   Summary of sulforaphane antitumor mechanisms
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TA B L E  1  Epidemiological	studies	regarding	cruciferous	vegetables	consumption	and	risk	of	different	cancers

Type of cancer Participants Findings References

Lung cancer Post- menopause women Significant protection from lung cancer and diagnosis of 
large cell carcinoma due to consumption of cruciferous 
vegetables (p = .02; OR =	0.72;	95%	CI	=	0.40–	1.29).

Steinmetz et al. (1993)

N = ♀	41,837

N = ♀	89,284	(34–	59	years) Consumption	of	broccoli	lowered	the	relative	risk	of	lung	
cancer (p = .03; RR =	0.9;	94%	CI	= 0.6– 1.3).

Speizer et al. (1999)

N = ♀ 77,283 (39– 63 years) Non- significant association was reported for both males 
and females.

Diane et al. (2000)

N = ♂	47,778	(40–	75	years)

N = ♀14,254	(50–	69	years)	
N = ♂4,060	men	(45–	69	years)

Consumption	of	cruciferous	vegetables	more	than	3.5	
times a week lowered the relative risk of lung cancer 
(p = .01; RR =	0.68;	95%	CI	=	0.45–	1.04).

Marian	et	al.	(2003)

N = ♀♂272,303 No significant association was found for the reduction of 
lung cancer.

Smith-	Warner	
et al. (2003)

N = ♀♂519,978 (25–  70 years) No correlation was recorded with risk reduction. Grundy et al. (2016)

Systematic review of 30 studies Association	between	cruciferous	vegetables	
consumption and cancer reduction was observed 
(OR =	0.78;	95%	CI	= 0.70– 0.88).

Lam et al. (2009)

Colorectal	cancer N = ♂1997 Lower (p = .001; RR =	2.49)	or	no	(p = .0003; RR = 2.98) 
consumption of cruciferous vegetables was related with 
increase colon cancer risk.

Graham et al. (1978)

N = ♀396

N = 971 Inverse correlation was observed between proximal 
& distal colon cancer risk and consumption of low 
fat high cruciferous vegetables diet (OR = 0.59; 95% 
CI	= 0.35– 0.97).

Young, and 
Wolf,	(1988)

N = ♂112 cases +185 controls Reduced cancer risk was observed in men than women 
due to consumption of cruciferous vegetables 
(OR =	0.3;	90%	CI	= 0.1– 0.8).

West	et	al.	(1989)

N = ♀119 cases +206 controls

N =	784 Consumption	of	cruciferous	vegetables	protects	from	
rectal (RR = 0.5) and colon (RR =	0.48)	cancers.

Benito et al. (1990)

N = ♀41,837 Insignificant associations with cancer risk reduction were 
observed.

Steinmetz	et	al.	(1994)

N = ♀88,764 Insignificant associations with cancer risk reduction were 
observed.

Michels	et	al.	(2000)

N = ♂47,325

N = ♀ 62,573 Consumption	of	cruciferous	vegetables	two	times	a	week	
lowered the relative risk of colon cancer (p =	.004;	
RR =	0.51;	95%	CI	= 0.33– 0.80).

Voorrips et al. (2000)

N = ♂ 58,279

N = ♂62,609 Significantly reduced colon cancer risk among men was 
observed (p = .03; RR =	0.66;	95%	CI	=	0.46–	0.95)	but	
not for women.

McCullough	
et al. (2003)N = ♀70,554

N =	1773	(40–	79	years) Colorectal	cancer	risk	remained	unaffected	among	
surveyed patients.

Annema	et	al.	(2011)

Meta-	analysis	of	35	studies Colorectal	and	colon	cancer	risks	were	reduced	with	
cruciferous vegetables consumption (p = .03; RR = 0.66; 
95%	CI	=	0.46–	0.95).

Wu	et	al.	(2013)

Breast cancer N = ♀5,482	(50–	74	years) Breast cancer risk reduction with cruciferous vegetables 
consumption (p = .01; R =	0.84;	95%	CI	= 0.71– 0.98).

Paul et al. (2001)

N = ♀351,825 No association was observed with overall breast cancer 
risk.

Stephanie et al. (2001)

N = ♀3,015	(25–	64	years) Glucosinolate intake was negatively related to breast 
cancer (p < .01; OR =	0.5;	95%	CI	= 0.3– 0.8).

Fowke et al. (2003)

N = ♀1,550 Marginally	inverse	relation	of	broccoli	consumption	with	
breast cancer in premenopausal women was observed 
(p < .058; OR =	0.6;	95%	CI	=	0.40–	1.01).

Ambrosone	
et	al.	(2004)

(Continues)
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Type of cancer Participants Findings References

N = ♀1,491	cases Inverse relation between cruciferous vegetables 
consumption and breast cancer risk was found 
(p < .0006; OR =	0.68;	95%	CI	= 0.55– 0.86).

Lin et al. (2017)

N = ♀1,482	controls

N = ♀2,150 (<65 years) No coalition in breast cancer patients. Steck et al. (2007)

N = ♀1,463	cases An	inverse	association	among	postmenopausal	
(OR =	0.80;	95%	CI	= 0.60– 1.05) but not premenopausal 
breast cancer and fruit and vegetable intake was noted.

Gaudet	et	al.	(2004)

N = ♀1,500 controls

N = ♀6,072 Higher	Chinese	cabbage	consumption	resulted	in	
lower risk of postmenopausal breast cancer (p <	.049;	
OR =	0.76;	95%	CI	= 0.60– 0.96).

Lee et al. (2008)

Meta-	analysis Cruciferous	vegetables	consumption	reduced	breast	
cancer incidences (p =	.047;	OR	= 0.85; 95% 
CI	=	0.77–	0.94).

Liu and Kezhen (2013)

Prostate cancer N = ♂17,633 (<35 years) No significant association could be concluded with 
respect to vegetable consumption and prostate cancer 
risk.

Hsing	et	al.	(1990)

N = ♂58,279 (55– 69 years) No significant association was noticed with respect to 
vegetable consumption and prostate cancer risk.

Schuurman et al. (1998)

N = ♂1,253 Protective effect was noticed by consumption of 
cruciferous vegetables and risk of prostate cancer 
(OR =	0.69;	95%	CI	= 0.52– 0.91).

Jain et al. (1999)

N = ♂1,230	(40–	64	years) Consumption	of	cruciferous	vegetables	was	associated	
with reduced risk of prostate cancer (p = .02; OR = 0.59; 
95%	CI	= 0.39– 0.90).

Cohen	et	al.	(2000)

N = ♂3,237 (>84	years) Intake of cruciferous vegetables was inversely related 
to risk of prostate cancer (p = .006; OR = 0.61; 95% 
CI	=	0.42–	0.88).

Kolonel et al. (2000)

Meta-	analysis	of	12	studies High	intake	of	Brassica vegetables modestly reduces 
the risk of prostate cancer (p = .06; OR = 0.80; 95% 
CI	= 0.58– 1.10).

Kristal and Lampe 
(2002)

N = ♂47,365 Intake of cruciferous vegetables was inversely related 
to risk of prostate cancer in males aged below 65 years 
(p = .02; RR =	0.81;	95%	CI	=	0.64–	1.02)	whilst	no	
association was seen with aged >65 years.

Giovannucci 
et al. (2003)

N = ♂130,544 No association was observed in prostate cancer risk and 
consumption of cruciferous vegetables.

Key	et	al.	(2004)

N = ♂965	(45–	85	years) Prostate cancer risk was reduced with cruciferous 
vegetables consumption (p = .002; OR = 0.58; 95% 
CI	= 0.38– 0.89).

Joseph	et	al.	(2004)

N = ♂29,361	(55–	74	years) High	intake	of	cruciferous	vegetables	was	associated	
with reduced risk of aggressive prostate cancer (p = .02; 
RR =	0.60;	95%	CI	= 0.36– 0.98).

Kirsh et al. (2007)

N = ♂11,405 Prostate cancer risk decreased on glucosinolate 
consumption (p =	.03;	HR	=	0.68;	95%	CI	=	0.48–	0.97).

Steinbrecher 
et al. (2009)

Meta-	analysis	of	13	studies Cruciferous	vegetables	intake	was	related	to	decreased	
risk of prostate cancer (RR =	0.90;	95%	CI	= 0.85– 0.96).

Liu et al. (2012)

Pancreatic cancer N = ♀♂1753 Decreased pancreatic cancer cells with increased 
cruciferous vegetables consumption for both males and 
females (OR =	0.50;	95%	CI	=	0.4–	0.8).

Silverman et al. (1998)

N = ♀36,616 Cabbage	consumption	has	significant	inverse	relation	
with	pancreatic	cancer	risk	reduction	(HR	= 0.62; 95% 
CI	= 0.39– 0.99).

Larsson et al. (2006)

N = ♂45,306

N = ♀♂183,522 No significant association was found with cruciferous 
vegetable consumption and pancreatic cancer risk.

Nöthlings et al. (2007)

TA B L E  1   (Continued)
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that may relate to its anticancer activities (Dacosta et al., 2017). 
A	 recent	 study	 has	 indicated	 that	 sulforaphane	 promotes	 the	
dendritic	cell	stimulatory	capacity	via	modulation	of	miRNA	and	
other	regulatory	molecules	(Wang	et	al.,	2020).	Although,	the	role	
of	SFN	in	modulating	miRNA	has	been	explored	in	various	other	
cancer	types	(Dacosta	et	al.,	2017;	Huang	et	al.,	2018;	Lewinska	
et al., 2017) but further investigations are still needed to firmly 
confirm the mechanisms by which the SFN may influence the 
activities	of	miRNA	 in	 leukemia.	 It	 has	been	 reported	 that	 SFN	
minimized the number of cancer cells and likewise improved the 
mortality	 rate	 in	 acute	 myeloid	 leukemia	 (AML)	 cells	 through	
apoptosis induction. This is however a dose- dependent treat-
ment that may carry for different types of cancers (Koolivand 
et al., 2018).

Another	study	suggested	that	SFN	treatment	exhibited	mod-
ulating effects on immune system through enhancing the T-  and 
B- cell marker population, their proliferation & phagocytic activity 
among macrophages and an increase in natural killer (NK) cell cy-
totoxicity	 in	WEHI-	3-	induced	 leukemia	 cell	 line	 of	mice	 in	 vitro	
(Shih et al., 2016). The NK cells are innate immune cells which are 
of	 critical	 importance	 in	 controlling	 cancer.	Mechanistically,	 the	
activating receptors recognize the cancer cells from the molecules 
which are expressed on their surfaces and then switch on the NK 
cells	 to	kill	 these	targeted	cells.	Alongside,	NK	cells	also	secrete	
the cytokines like TNFα and INFγ which act on other immune cells 
like macrophages and dendritic cells to promote the immune re-
sponse (Bald et al., 2020).

Recent research also highlights the increase in retinoid acid- 
induced superoxide- generating activity, cytotoxicity, and growth 
retardation	 in	 human	 monoblastic	 U937	 cells	 by	 application	 of	
SFN	resultantly	assuaging	leukemia	(Akiyoshi	et	al.,	2019).	Recent	
research work supported the role of SFN in autophagy induction 
in leukemia with specific concentration and time- dependent fac-
tors observed in KG1a and K562 cell lines. SFN exhibited the anti-
proliferation effect by modulation of Bax, caspase- 3, and Bcl- 2 in 
this	apoptosis	induction	process	(Wang,	Chen,	Zhu,	et	al.,	2018).	
Another	 research	 conducted	 on	 chronic	myelogenous	 Leukemia	
K562 cells also demonstrated the autophagy contribution of iso-
thiocyanates and induction of mitotic arrest leading to cell death 
so the induction of autophagy may also be devised as a vital mech-
anism	involved	in	protection	from	leukemia	(Wu	et	al.,	2019).

4.2 | Brain cancer

The	cancers	of	central	nervous	system	 (CNS)	 include	different	 tu-
mors that are formed from cells present inside the brain including 
glioblastoma	multiform	(GBM).	It	 is	among	the	most	malignant	and	
aggressive forms of tumors reportedly present (Zhou et al., 2018). 
GBM	emanating	from	glial	cells	is	highly	malignant	with	main	cases	
in	elderly	patients	(Aldape	et	al.,	2015;	Louis	et	al.,	2016).	For	their	
treatment, established tumors are majorly removed surgically, and 
their	subsequent	growth	may	be	inhibited	by	cancer	cell	 inhibitors	

like	radiations	and	chemotherapy.	The	use	of	ITC	and	SFN	may	act	
as	adjuvant	to	slower	or	inhibit	the	growth	of	cancer	cells.	However,	
the	dose	of	 the	 compound	and	 frequency	of	 the	exposure	 should	
be considered in therapies. In a recent study, it has been shown 
that	sulforaphane-	N-	acetylcysteine	(SFN-	NAC)	is	a	potential	agent	
against	 glioma	 that	 induces	 autophagy	 via	 ERK1/2	 activation	 (Liu,	
Wang,	 Kang,	 et	 al.,	 2018).	 Sita	 and	 co-	workers	 summarized	 that	
death	due	to	glioblastoma	in	adults	 is	most	frequent	and	SFN	may	
play an important role in its therapeutic treatment (Sita et al., 2018). 
Vigorous research is needed to unveil the potential utilization of 
SFN and its derivatives for effective treatment of brain tumors. 
Furthermore, the use of SFN as adjuvant to other drugs should also 
be explored to fully benefit from its therapeutic effects.

4.3 | Breast cancer

The second major cause of cancer- based deaths among women is 
considered	as	breast	cancer.	Among	the	risk	factors,	genetic	back-
ground including fetal development in utero and embryogenesis 
are cardinal (Li et al., 2018). The data indicated that many cancer 
types are commenced and propagated by a trifling number of can-
cer	stem	cells	 (CSCs)	 (Lv	et	al.,	2017).	This	small	population	via	re-
peated self- renewal and differentiation mechanisms results in the 
progression of tumor cell's lump. This mass production of tumor bulk 
is	regulated	by	a	quite	similar	pathway	exhibited	by	normal	stem	cells	
(Li	et	al.,	2018).	 In	a	dive	of	unveiling	hidden	mechanisms,	Wnt/β- 
catenin,	Hedgehog,	and	Notch	are	identified	as	critical	self-	renewal	
mechanisms	 related	 to	CSCs	 (Aster	 et	 al.,	 2017;	 Luo	 et	 al.,	 2019).	
Additionally,	they	also	contribute	to	tumor	reversion	as	they	are	not	
eradicated fully by chemotherapy and radiation therapy (Baumann 
et al., 2008; Ludwig & Kornblum, 2017). Therefore, it is suggested 
that the self- renewal pathways should be targeted to remove the 
CSCs	 for	 avoiding	 relapse	 and	 for	 overpowering	 tumor	 resistance	
(Nalini et al., 2020).

Wnt/β- catenin pathway is considered an imperative pathway 
for	the	CSCs	self-	renewal	mechanism	in	breast.	The	Wnt-	targeted	
genes are moderated by β- catenin, that moving into the nucleus, 
fasten	 itself	 to	 the	 transcription	 factors	 T-	cell	 factor	 (TCF),	 or	 to	
the	 lymphoid	 enhancer	 factor	 (LEF).	 The	modulation	 of	β- catenin 
at the intracellular level is carried out by multi- protein complex. 
This complex contains glycogen synthase kinase 3β (GSK3β), ade-
nomatous polyposis coli, casein kinase 1α, and some concentration 
of	axin	 (Steinhart	&	Angers,	2018).	The	proteasome	deterioration	
of β- catenin is carried out by GSK3β via phosphorylation of three 
specified	amino	acids	 (Ser33/Ser37/Thr41)	on	β- catenin (Nusse & 
Clevers,	2017).	SFN	targets	both	the	breast	cancer	xenografts	and	
the	cancer	cell	line	via	suppression	of	Wnt/β- catenin pathway. The 
SFN not only prevented proliferation but also encouraged apopto-
sis	among	breast	cancer	cells.	The	in	vivo	breast	CSCs	elimination	
reflected the prevention of tumor growth in tumor cell- inoculated 
in	 mice	 (Liu,	 Peng,	 et	 al.,	 2017).	 Different	 other	 techniques	 and	
methods have also been developed to detach and characterize the 
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TA B L E  2   Physiological effects of sulforaphane against different cancer types

Cancer type Experimental material Physiological effects/mechanisms Reference

Blood cancer/
leukemia

Chronic	leukemia	cancer	stem	
cells

Enhanced	abrogation	of	Wnt/β- catenin function Lin et al. (2012)

(0– 30 μM	SFN)

Leukemia cells Modulates	AQP8-	linked	redox	signaling Prata et al. (2018)

(5– 30 μM	SFN)

Acute	myeloid	leukemia Controls	miR−155	levels Koolivand et al. (2018)

(15– 60 μM	SFN)

WEHI-	3-	induced	leukemia Enhanced	phagocytosis	of	macrophages	and	natural	killer	cell	
active killer cell activities

Shih et al. (2016)

(0,	285,	570,	and	1,140	mg/kg)	for	3	weeks)

Human	monoblastic	U937	cells Growth inhibition, cytotoxicity and enhancement of retinoic acid- 
induced superoxide- generating activity

Akiyoshi	et	al.	(2019)

(0– 5 μM	SFN)

Brain cancer Glioblastoma Apoptosis	via	microtubule	disruption	in	cancer Zhou et al. (2018)

(0– 70 μM	SFN)

U87MG	and	U373MG	cells Induction	of	autophagy	via	activation	of	ERK1/2 Liu,	Wang,	Kang,	
et al. (2018)(0– 30 μM	SFN-	NAC)

Breast cancer Breast cancer cells Modulation	of	epigenetic	mechanisms Li et al. (2018)

(26% SFN- based broccoli sprout diet)

Mammary	glands Lowering tumors incidence and their multiplication Zhang	et	al.	(1994)
Fahey et al. (1997)(75– 150 µM	sulforaphane/day)

(25	and	100	mM	glucosinolates	or	25–	100	mM	isothiocyanates/
day)

Breast cancer cells Induction of apoptosis and cell cycle arrest Kanematsu et al. (2010)

(30 μM	SFN)

Breast cancer cells Inhibits the growth KPL- 1 human breast cancer cells Kanematsu et al. (2011)

Suppress the growth and mastitis

(25 or 50 mg/kg SFN/week for 26 days)

Breast cancer cells Induction of cell cycle arrest Lewinska et al. (2017)

DNA	hypomethylation

(5– 50 µM	SFN)

Mammary	adipose	mesenchymal	
stem cells

Inhibits mammary adipogenesis Li et al. (2013)

(10 µM	SFN	for	7	days)

Breast cell lines Modulation	of	expression	of	cytochrome	P450 Licznerska et al. (2015)

(5– 80 µM/L	SFN)

Human	breast	cancer	cells Epigenetic	repression	of	hTERT Meeran	et	al.	(2010)

(5– 20 µM	SFN)

Human	breast	cancer	cell	lines Induction of cell type– specific apoptosis Pledgie- Tracy 
et al. (2007)(5– 25 µM	SFN)

Human	breast	cancer	cell	lines Modulation	of	AhR,	ERα, and Nrf2 Szaefer et al. (2015)

(Cabbage	juice	containing	glucosinolates	3.283	to	4.623	µmol/g)

Lung cancer Lung adenomas Inhibit malignant progression Conaway	et	al.	(2005)

(1.5– 3 µM	SFN/g	of	diet)

Lung tumor Suppression	of	tumorigenesis	via	downregulation	of	HDAC	activity Jiang et al. (2016)

(5– 15 µM	SFN)

human lung cancer cells Reduces anoikis resistance and anchorage- independent growth Tsai et al. (2019)

(1–	40	µM	SFN)

Lung cancer cell Potentiate	anti-	metastasis	through	JAK2/STAT3	pathway Wang,	Wang,	
et al. (2018)(0– 100 µM	PEITC)

(Continues)
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Cancer type Experimental material Physiological effects/mechanisms Reference

Gastric cancer AGS	Human	gastric	cancer	cells ROS-	mediated	AMPK	activation,	apoptosis,	and	mitotic	arrest Choi	(2018)

(1– 20 µM	SFN)

Gastric cancer stem cells Suppression of sonic hedgehog pathway Ge et al. (2019)

(1– 10 µM	SFN)

Human	gastric	cancer	cells Alterations	of	CDX1	and	CDX2	expression	and	changes	in	miR-	9	
and miR- 326 levels

Kiani et al. (2018)

(31.25– 250 µg/ml SFN)

Liver cancer Liver	of	C57BL/6J	mice	and	
C57BL/6J/Nrf2	(−/−)	mice

Modulation	of	genetic	expression Hu	et	al.	(2006)

Liver cancer cells Inhibition of liver cancer cell growth and angiogenesis Sato et al. (2018)

Pancreatic cancer Pancreatic cancer cells Activation	of	Nrf2,	inhibition	of	progression	via	AMPK-	dependent	
signaling

Chen	et	al.	(2018)

(1– 100 µM	SFN)

Pancreatic cancer cells Inhibition of miR30a- 3p Georgikou et al. (2020)

(10 µM	SFN)

Cancer	stem-	like	cells	of	
pancreas

Enhances	drug-	mediated	cytotoxicity Kallifatidis et al. (2011)

(5 µM	SFN)

Pancreatic tumor- initiating cells NF- κB- induced antiapoptotic signaling Kallifatidis et al. (2009)

(5– 20 µM	SFN)

Pancreatic cancer cells Perturbs	cell	cycle	progression	and	increased	DNA	damage Naumann et al. (2017)

(2– 10 µM	SFN)

Pancreatic cancer Inhibits the cancer cell progression via inducing miR135b- 5p Yin et al. (2019)

(10 µM	SFN)

Ovarian cancer Epithelial	ovarian	cancer	cells induces	cell	cycle	arrest	via	protection	of	RB-	E2F-	1	complex Bryant et al. (2010)

(5– 20 µM	SFN)

Human	ovarian	cancer	cells Induces	cell	cycle	arrest	in	G2/M	phase	through	blockade	of	cyclin	
B1/CDC2

Chang	et	al.	(2013)

(6.25– 12.5 μM	SFN)

Ovarian cancer cells Antiproliferative	effects Chaudhuri	et	al.	(2007)

(1–	40	µM	SFN)

Ovarian cancer cells Inhibited growth of cancer cells Kim et al. (2017)

(0– 100 µM	SFN)

Cervical	cancer Cervical	cancer	cells Induces	G2/M	arrest	via	cyclinB1	downregulation	and	GADD45β/
CDC2	association

Cheng	et	al.	(2016)

(0– 25 µM	SFN)

Human	cervical	cancer	cells Induces differential effects in apoptosis and cell cycle arrest Hussain	et	al.	(2012)

(2.5– 8 µM	SFN)

Human	cervical	cancer	cells Induces apoptosis and anti- inflammatory effects Sharma et al. (2011)

(0– 20 µM	SFN)

Bladder cancer Bladder cancer Inhibits	histone	deacetylase	(HDAC)	activity Abbaoui	et	al.	(2017)

(5– 20 µM	SFN)

BIU87	bladder	cancer	cell	line Inhibition	of	proliferation	via	IGFBP−3	elevation Dang	et	al.	(2014)

(2.5– 80 µM	SFN)

Human	bladder	cancer	cell Inhibits cancer cell invasion by reversal of epithelial- to- 
mesenchymal	transition	via	directly	targeting	microRNA−200c/
ZEB1	axis

Huang	et	al.	(2018)

(2.5– 80 µM	SFN)

TA B L E  2   (Continued)
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Cancer type Experimental material Physiological effects/mechanisms Reference

Bladder tumor Targets epithelial- to- mesenchymal transition, tumor growth, and 
survival

Islam et al. (2016)

(10–	40	µM	SFN)

Prostate cancer Human	prostate	cancer	cells Suppresses	prostate	cancer	via	normalization	of	lncRNAs,	up-	
regulates	genes	including	GAPDH,	MAP1LC3B2,	and	H2AFY	
which regulates glycolysis, autophagy, and chromatin structure, 
respectively

Beaver et al. (2017)

(15 µM	SFN)

Human	prostate	cancer	cells Causes	autophagy	to	inhibit	release	of	cytochrome	C	and	
apoptosis

Herman-	Antosiewicz	
et al. (2006)

(40	µM	SFN)

Prostate stem- like cancer cells Enhances	drug-	mediated	cytotoxicity Kallifatidis et al. (2011)

(5 µM	SFN)

AIPC	cell	lines	DU145	and	PC3 Inhibition	of	tumor	growth,	TRAIL-	induced	NF-	κB	binding;	CXCR4,	
Jagged1,	Notch	1,	SOX	2,	&	Nanog	expression,	ALDH1	activity	
and elimination of differentiation and self- renewal potential

Labsch	et	al.	(2014)

(10 µM	SFN)

LnCaP	and	PC-	3	prostate	
epithelial cells

Inhibition	of	histone	deacetylase	activity	in	BPH-	1 Myzak,	Hardin,	
et al. (2006)(15 µM	SFN)

PC-	3	human	prostate	cancer	
cells

Induces caspase- mediated apoptosis and retards growth of cancer 
cells

Singh	et	al.	(2004)

(0– 100 µM	SFN)

Prostate cancer cells Causes	transcriptional	changes Traka et al. (2019)

Colon	and	
colorectal cancer

HT-	29	and	RKO	human	colon	
cancer cells lines

Concentration-	dependent	inhibition	of	inflammatory	cytokine	
production by immune cells

Bessler, and 
Djaldetti, (2018)

(1.25– 5 µM	SFN)

Colonic	adenocarcinoma	Caco-	2 Modulates	microRNA	expression	to	regulate	oncogenes	CDC25A,	
HMGA2,	and	MYC

Dacosta et al. (2017)

(10 µM	SFN)

Colorectal	cancer	cells Increases	mRNA	expression	of	apoptosis-	regulatory	genes,	
cyclooxygenase	2,	and	Bcl−2-	associated	X	protein

Darkwa et al. (2019)

HCT116	and	AGS	cells Inhibited	HIF−1α expression, hypoxia- induced vascular endothelial 
growth	factor	(VEGF),	and	HIF−1α expression inhibiting human 
colon cancer progression and cancer cell angiogenesis

Kim et al. (2015)

(12.5– 50 µM	SFN)

HCT	116	human	colon	cancer	
cells

Cell	death	induction	through	G2/M	phase	arrest	and	triggers	
apoptosis

Liu et al. (2016)

(0–	40	µM	SFN)

Colorectal	cancer	cells Epigenetic	modulation	of	microRNA−21	and	human	telomerase	
reverse	transcriptase	(hTERT)	down-	regulation

Martin	et	al.	(2018)

(2.5– 20 µM	SFN)

AOM-	pretreated	mice Suppressed	formation	of	microscopic	ACF	and	macroscopic	
colonic tumors, inducing apoptosis of colonic tumor cells through 
inhibition	of	HDAC	activity

Yanaka et al. (2019)

(2,200 ppm kg−1 day−1 SFN for 8 weeks)

Bone cancer Canine	osteosarcoma Pro- proliferation and cryoprotective characteristics Rizzo et al. (2017)

(0.8– 100 µM	SFN)

Murine	osteosarcoma	cells Radio- sensitization Sawai et al. (2013)

(2.5– 20 µM	SFN)

Human	osteosarcoma	MG-	63	
cells

Induces	DNA	damage	and	mitotic	abnormalities Ferreira de Oliveira 
et	al.	(2014)(5– 20 µM	SFN)

TA B L E  2   (Continued)
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breast	CSCs	in	vitro.	Mammosphere	culture	generally	involves	using	
0.5– 5 µmol/L	of	SFN	for	mammary	cells	suppression	(SUM159	and	
MCF7	cells)	(Charafe-	Jauffret	et	al.,	2008).	Another	technique	is	cell	
marker	usage	for	example	CD44+CD24−/low	lin−and	ALDH	positive	
in the differentiation of mammary stem cells and the differenti-
ated cancer cells. It has been found that SFN at a dose of approxi-
mately 1– 5 µmol/L	inhibited	the	tumor	commencing	ALDH-	positive	
cells	(65%–	80%)	in	vitro	(Charafe-	Jauffret	et	al.,	2008;	Visvader	&	
Lindeman, 2008).

SFN has also been reported to induce autophagy response in 
the triple- negative breast cancer cells through the downregulation 
of	HDAC6-	mediated	acetylation	modification	phenomena	of	phos-
phatase	 and	 tensin	 homolog	 (PTEN)	 activation	 mechanism.	 The	
experiments were conducted on nude mice to confirm this inhibi-
tory	potential	 of	 SFN	on	MDA-	MB-	231	 xenografts	 growths	 (Yang	
et al., 2018). Similarly, another research investigation further sup-
ported the autophagy induction by SFN in the breast cancer cell line 
at 20 µM	while	lower	concentration	promoted	cell	cycle	arrest	and	
p2,	p27	cell	senescence	in	breast	cancer	cell	lines	of	MCF-	7,	MDA-	
MB-	231,	and	SK-	BR-	3	(Lewinska	et	al.,	2017).	Furthermore,	research	
conducted on triple- negative breast cancer cell line indicated com-
bined treatment with SFN and 5- fluorouracil (5- flu) synergistically 
reduced the level of thymidylate synthetase inducing autophagic 
death	of	the	cell	and	senescence	prematurely	(Milczarek	et	al.,	2018).

4.4 | Lung cancer

Lung	 cancer	 (LC)	 is	 considered	 responsible	 for	 the	 first	 cause	 of	
death	among	other	types	of	cancers	(Zhang	et	al.,	2018).	Exposure	
to	 airborne	 carcinogens,	 cigarette	 smoke	 (CS),	 exhaust	 from	auto-
mobiles, and combustion from coal mining industry cause initial 
DNA	rupture,	 later	 followed	by	mutation	 (Cohen	et	 al.,	2019;	Zhu	
et	al.,	2017).	Cigarette	smoke	contains	polycyclic	aromatic	hydrocar-
bons	(PHAs)	along	with	nicotine-	derived	nitrosamine	ketones	(NNK)	
that	 are	 prominent	 carcinogens	 (Hecht,	 2012;	 Smith	 et	 al.,	 2016;	
Zhang	et	 al.,	 2018).	However,	 the	epidemiological	 reports	 suggest	
that	air	pollution	is	more	responsible	for	increased	rates	of	LC	(Eckel	
et	al.,	2016;	Li	et	al.,	2019).	The	particulate	matter	(PM)	is	predomi-
nantly consistent with increased carcinogenic potential according 
to epidemiological research and experiments carried out on animals 
(Gharibvand	et	al.,	2017;	Huang	et	al.,	2017).

Apart	 from	extrinsic	 factors,	 some	of	 the	 endogenous	mecha-
nisms	are	also	responsible	for	LC	 including	the	change	 in	estrogen	
[17β-	estradiol	 (E2)]	 and	 estrogen	 receptors	 (ERs)	 or	 estrogenic	
activity	 by	 smoking	 (Peng	 et	 al.,	 2017).	 Alteration,	 denaturation,	
methylation,	 and	 mutation	 in	 DNA,	 inflammation,	 immune/oxida-
tive stress response, changes in telomere length along with some 
epigenetic factors are reportedly due to environmental pollutants 
(DeMarini,	 2013;	Wong	 et	 al.,	 2016).	 A	 research	 study	 conducted	
from	year	1991	to	2009	on	12,469	cases	of	different	cancers	and	
11,493	controls	indicated	significant	decrease	in	risk	of	cancer	devel-
opment in oral cavity, pharynx, esophagus, breast, kidney & colorec-
tum, and odds ratio (OR) in case of stomach, liver, pancreas, ovary, 
and	prostate	cancers	(Bosetti	et	al.,	2012).	Multiple	researches	and	
systemic reviews signify reversed correlation between cruciferous 
vegetables	 and	LC	 (Brennan	et	 al.,	 2005;	Mori	 et	 al.,	 2017;	Zhang	
et al., 2018). In a population- based prospective study conducted in 
Japan, five- year survey of 82,330 participants concluded that con-
sumption	of	cruciferous	vegetables	reduces	the	LC	risk	among	both	
the	 past-	smokers	 and	 non-	smokers.	 However,	 no	 association	 was	
observed in current smokers that is attributed to lack of statistical 
power due to fewer patients in the highest tertile (Tang et al., 2010). 
This phenomenon needs further study and meta- analysis to find out 
the	actual	relation	between	the	smoking	status	and	risk	of	LC	in	con-
sumers of cruciferous vegetables.

Many	studies	have	reported	the	effectivity	of	isothiocyanate	on	
cellular level against cancer. It also inhibits the induction of apopto-
sis and is linked with the nuclear factor- kappa B (NF- kB) functioning; 
a transcription factor commonly found in the cancerous cells of hu-
mans.	Phenethyl	isothiocyanate	(PEITC)	is	most	effective	against	the	
cancers via cytogenetic damage, variations in transcriptome and lung 
tumorigenesis	propagated	by	CS	(Fimognari	et	al.,	2012).	PEITC	also	
prevents	the	formation	of	xenoestrogen	bisphenol	A	(BPA)-	induced	
DNA	adducts	 (Cohen	et	al.,	2019).	SFN	also	suppresses	 lung	 tum-
origenesis	via	downregulation	of	HDAC	activity	(Jiang	et	al.,	2016).	
Additionally,	the	13C	and	the	products	of	its	condensation	process	
including	3,	3’-	diindolylmethane	(DIM)	also	exhibit	antitumor	poten-
tial	especially	in	LC,	along	with	SFN	inhibiting	the	LC	through	epigen-
etic	impacts.	Another	projected	mechanism	of	SFN	as	an	anticancer	
agent	is	through	the	modulation	of	microRNA	(miRNA)	expression.	
These	 are	 small	RNA	molecules	having	diversified	biological	 func-
tions,	 enmeshed	during	LC.	PEITC	and	13C	exhibited	 the	baseline	
expression	of	miRNAs	(Cohen	et	al.,	2016;	Izzotti	et	al.,	2010).	This	

Cancer type Experimental material Physiological effects/mechanisms Reference

Skin cancer Skin of mice Antitumor	activity	via	blocking	of	sulfatase−2 Alyoussef,	and	
Taha, (2019)(40	µM	SFN)

SKH-	1	high-	risk	mice Protected	against	UV-	induced	carcinogenesis Dinkova- Kostova 
et al. (2006)(0.1– 1.5 µM	SFN)

TPA-	induced	mouse	skin	cell Suppression of tumor promoter via epigenetics reprogramming of 
Nrf2

Su	et	al.	(2014)

(0– 5 µM	SFN)

TA B L E  2   (Continued)
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impact	is	also	related	to	anti-	estrogenic	potential	of	PEITC	and	13C	
(Cohen	et	al.,	2017).	Research	has	also	been	conducted	on	the	novel	
effectivity	 of	 SFN-	N-	acetylcysteine	 (NAC)-	induced	 autophagy	 in	
glioma	 cells.	 This	 autophagias	 process	 is	 indicated	 in	U87MG	 and	
U373MG	cells	lines	with	dose-	dependent	cell	cycle	arrest	observed	
in	the	G2/M	phase	(Liu,	Wang,	Kang,	et	al.,	2018)	(Figure	7).

4.5 | Gastric cancer

This type of cancer is considered as the fifth common disease 
worldwide	 (Duckworth	 et	 al.,	 2015).	 Although,	 the	 gastric	 cancer	
treatments have been developed but the relative survival rate of 
5 years remains low among gastric cancer patients (Ge et al., 2019). 
The	CSCs	 in	gastric	cancer	not	only	delineate	 in	 the	 form	of	 solid	
tumor but are also responsible for heterogeneity, resistance against 
drugs, metastasis, and the repeated recurrence of cancers in the 
human body (Takebe et al., 2015). Sonic hedgehog (Shh) pathway 
in	 the	maintenance	 of	 CSCs	 for	 prevention	 of	 gastric	 cancer.	 Shh	
is	composed	of	hedgehog	(Hh)	 ligand	with	Patched	(Ptch)	receptor	
and	Smoother	(Smo)	transmembrane	protein.	When	Hh	ligand	is	not	
present, Ptch inhibits the activity of Smo through catalytic action by 
suppressing	the	transduction	of	signals.	When	Hh	binds	with	Ptch,	
this alleviates the preventive impact on Smo, thereby initiating the 
Gli transcription factor (Gli1 and Gli2 both). This controls the tar-
geted	 gene	 transcription	 by	 merging	 both	 the	 promoters	 (Akyala	
&	Peppelenbosch,	2018;	Chakrabarti	 et	 al.,	 2018;	Hu	et	 al.,	 2015;	
Katoh & Katoh, 2005). The dietary broccoli alters the microbiota that 
consequently	 affects	 the	 conversion	 of	 glucoraphanin	 (Liu,	Wang	
et al., 2017; Zinoviadou & Galanakis, 2017). The suppressive effect 
of	SFN	on	gastric	CSCs	by	down-	regulating	Sonic	Hh	pathway	and	
other chemoprotective applications of SFN for cancer elimination is 
reported in the literature (Ge et al., 2019).

Similarly, in another research SFN prevented the escalation of 
AGS	 gastric	 cancer	 cells	 by	 promoting	 apoptosis,	 resulting	 in	 the	
usage	of	 cellular	proportion	of	G2/M	phase	 through	 cyclin	B1	 re-
serves	 and	 cyclin-	dependent	 kinase	 p21	 (WAFI/C1P1).	 After	 SFN	
treatment,	higher	concentration	of	phosphorylated	histone	H3	was	
apparently present. The apoptosis effects were delivered by SFN 
via	 AMPK-	dependent	 pathway.	 Likewise,	 SFN	 also	 activates	 the	
mitochondrial apoptotic signaling pathway by decreasing the mito-
chondrial membrane potential and rapid dislocation of cytochrome 
c	(Choi,	2018).	This	apoptotic	induction	with	mitochondrial	arrest	is	
accompanied	with	ROS	production	and	increased	AMPK	activation	
resulting	in	energy	homeostasis	(Avolio	et	al.,	2020).

Along	with	epigenetic	modification,	genetic	alterations	also	con-
tribute	to	the	propagation	of	gastric	cancer.	Many	miRNAs	including	
miRNA-	9	&	miRNA-	326	target	the	3’UTR	of	homeobox	(caudal	type)	
1	and	2	mRNA,	respectively.	Dose-	dependent	antiproliferative	 im-
pact	of	SFN	has	been	observed	on	AGS	and	MKN45	cells.	SFN	es-
pecially	SEBS	impacted	the	cancer	propagation	negatively	in	CDX1,	
CDX2,	miR-	9,	and	miR-	326	cancer	cell	lines	(Kiani	et	al.,	2018;	Rafiei	
et	al.,	2020).	Nevertheless,	 further	research	 is	 required	to	 identify	

the	antitumor	mechanisms	of	SFN	mediated	via	miRNA	regulation	
and apoptosis.

4.6 | Liver cancer

Hepatocellular	carcinoma	(HCC)	is	considered	as	an	assertive	form	
of	solid	malignancy	(Mancuso	&	Perricone,	2014;	Sato	et	al.,	2018).	
The	HCC	incidences	are	rising	excessively	on	global	scale	resulting	
in 5th common cancerous type among men and 7th common dis-
ease among women (Globocan, 2012; Venook et al., 2010). Research 
work indicates the role of SFN in arresting the cell cycle by reducing 
retinoblastoma (Rb) phosphorylation among different types of can-
cers	 (Bryant	et	al.,	2010;	Choi	et	al.,	2012).	Some	clinical	 research	
has also highlighted the dose- dependent preventive impact of SFN 
in	cancer	cell	 lines	 (Myzak	et	al.,	2006).	 It	has	an	 inhibitory	effect	
on cellular escalation by induction of apoptosis (Jang et al., 2015). 
Previous studies have also highlighted the efficacy of SFN against 
HepG2	 cell	 line	 for	 in	 vivo	 studies	 with	 xenograft	 models	 (Liu,	
Atkinson,	et	al.,	2017;	Liu,	Wang,	Zhou,	et	al.,	2018;	Zou	et	al.,	2017).	
Another	research	study	concluded	that	SFN	inhibited	the	prolifera-
tion, migration, and invasion of hepatocellular carcinoma cells. It also 
prevents	 the	multiplication	of	HepG2	cells	at	40.05	µM	exhibiting	
both	time	and	dose	dependency	(Wu	et	al.,	2016).

Although	Zou	 and	 his	 associates	 highlighted	 antitumor	 effects	
of SFN their exact mechanisms are still unknown (Zou et al., 2017). 
Furthermore, the role of Nrf2 signaling pathway is conflicting due 
to	its	different	expressions	in	normal	and	HCC	cells.	It	has	been	re-
ported that Nrf2 delivers beneficial effects in normal cells, but it 
causes	detrimental	effects	in	HCC	and	favors	proliferation	and	sur-
vival	of	HCC	(Raghunath	et	al.,	2018).	In	a	study	conducted	in	2018,	
SFN was found to hinder the growth of human liver cancer cells both 
in vivo and in vitro. It activated the Nrf2 signaling cascade in the 
cancerous cells of liver resulting in their proliferation, along with 
restraining	of	CCND1,	CCNB1,	CDK1,	 and	CDK2	mRNA	gene	 ex-
pression levels (Sato et al., 2018; Yagishita et al., 2019). Similarly, cell 
angiogenesis of human liver cancer is also mediated partially by the 
Nrf2 cascade (Sato et al., 2018). This dysregulation of Nrf2 makes 
the use of Nrf2 inducer compounds like SFN suspicious although 
their beneficial effects have also been observed in cancer preven-
tion. In this context, further research is necessitated to unveil the 
hidden mechanisms and their link to cancer prevention to effectively 
utilize the SFN in targeted cells.

4.7 | Pancreatic cancer

Pancreatic	ductal	adenocarcinoma	(PDA)	is	considered	as	the	prin-
cipal	cause	of	cancer-	based	death	of	2017	in	the	USA	with	firm	ex-
pectations of progressive second cause of mortality due to cancer 
worldwide in the next decade (Yin et al., 2019). Palliative chemo-
therapy	is	the	only	therapeutic	treatment	for	PDA	despite	exten-
sive	 research	of	 last	 few	decades.	However,	 scientific	evidences	
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elaborate the efficacy of SFN for cytotoxic therapy via involve-
ment	of	nuclear	factor	kappa	B	 (NF-	ĸB),	mainly	effective	against	
pancreatic (Kallifatidis et al., 2009), breast (Li et al., 2010), pros-
tate (Kallifatidis et al., 2011), and other tumor moieties (Labsch 
et	al.,	2014).

Some	 research	 studies	 have	 indicated	 microRNA	 (miRNA)	 as	
a potential tool for the control of pancreatic cancer progression. 
These are small 19– 25- nucelotide long, single- stranded, endoge-
nous,	and	noncoding	RNAs	that	bind	to	the	3ÚTR	of	a	target	mRNA	
that	induces	suppression	of	translation	or	degradation	of	mRNA	that	
results	 in	 inhibiting	 the	 protein	 expression	 (Calin	 &	 Croce,	 2006;	
Georgikou	et	al.,	2020;	Ha	&	Kim,	2014;	Zhu	et	al.,	2013).	Different	
types	 of	 miRNA	 exhibited	 both	 anti-		 and	 pro-	oncogenic	 effects	
via	 both	 direct	 and	 indirect	 mechanisms	 (Iorio	 &	 Croce,	 2012;	
Vasudevan, 2012). Some studies also demonstrate that role of 
miRNA135b-	5p	 and	 RASAL2	 is	 inconsistent	 in	 different	 types	 of	
cancers like pancreatic cancer cells as compared to normal or semi- 
malignant	 tissues	 (Zhou	et	al.,	2019).	However,	Yin	and	colleagues	
reported that sulforaphane induces miR135b- 5p and its target gene 
“RASAL2”	upregulation.	miR135b-	5p	has	been	identified	as	the	most	
important candidate for SFN- induced tumor suppressor by upregu-
lation	 of	RASAL2	which	 inhibits	 ERK	 signaling	 and	 progression	 of	
pancreatic cancer. Furthermore, immunohistochemistry and in situ 
hybridization	 identified	positive	correlation	of	miRNA135b-	5p	and	
RASAL2	gene	expression	(Yin	et	al.,	2019).	The	research	may	be	ex-
tended in this target domain to confirm the mechanisms involved 
that may be targeted to effectively utilize the SFN as an anticancer 
agent.

Along	with	inhibiting	the	pancreatic	cancer	cell	growth,	SFN	also	
escalates apoptosis and reduces the colony formation accompanied 
by	 inhibiting	their	migratory	potential	 (Abotaleb	et	al.,	2019;	Chen	
et	 al.,	 2018).	Due	 to	AMPK	 signaling	 activated	 by	 SFN,	 high	 con-
centrations of ROS are produced. These ROS propagate the trans-
location	 of	Nrf2	 that	 consequently	 prevent	 the	 pancreatic	 cancer	
cell	from	progression.	Hence,	SFN	triggers	Nrf2-	Keap1	pathway	to	
restrict	cancer	growth	and	tumors	(Chen	et	al.,	2018).	Another	re-
search demonstrated the different expression of histone deacety-
lase	 (HDAC)	 enzyme	 in	 case	 of	 pancreatic	 cell	 signals.	 Inhibitors	
of	 HDAC,	 SFN	 modulates	 both	 histone	 and	 non-	histone	 proteins	
(Ahmad	Ganai	et	al.,	2017).	Similarly,	some	research	work	also	sup-
ports the combined treatment of SFN with irradiations that imparts 
a	 distinctive	DNA	damage	 and	prevention	 from	 cell	multiplication	
among cancerous cells. It has been evinced that SFN also enhances 
the affectivity of chemo radiation in pancreatic cancer (Naumann 
et al., 2017).

4.8 | Ovarian cancer

Ovarian carcinomas are primarily a heterogeneous group of neo-
plasms; however, these are conventionally subclassified on the basis 
of type & degree of differentiation. Globally, ovarian cancer is the 
primary cause of gynecological cancer- related deaths and majority 

of the patients suffer relapse as well due to drug resistance (Jiang 
et al., 2020). It is contemplated as the major type of cancer affecting 
female	reproductive	organs	 (Torre	et	al.,	2015).	Apparently,	devel-
oped countries have more cases of ovarian cancer than develop-
ing countries. Due to limited symptoms, rapid progression, disease 
relapse, and drug resistance for the treatment of ovarian cancer is 
recognized	to	be	quite	complicated	(Hansen	et	al.,	2017;	Kaye,	2008;	
Kwon et al., 2015). The majority of its histological types are due to 
genetic defects that deregulate the specific signaling pathways in 
tumor	cells	(Cho	&	Shih,	2009).	Furthermore,	other	lifestyle	factors	
have also been identified to be involved in the progression of ovarian 
cancers	(Jayson	et	al.,	2014).

Various studies demonstrated the delineation effect of SFN on 
ROS	and	MAPK	activation	(Kim	et	al.,	2017).	The	application	of	SFN	
(3.6– 6.3µM)	resulted	in	reducing	the	cell	viability	in	ovarian	cancer	
cells	but	not	in	non-	cancer	cells	(fibroblasts).	Even	the	application	of	
10 µM	induced	only	30%	restriction	in	growth	among	IHFNO-	303	
and	 IHFOT-	208	 fibroblasts.	 Similarly,	 antioxidant	 properties	 also	
contribute	to	this	inhibition	(Barrera,	2012).	Another	study	demon-
strated the effectiveness of SFN (12 µM)	in	reduction	of	PA-	1	ovar-
ian	 cancer	 cell	 lines	 (Chang	 et	 al.,	 2013).	 Additionally,	 it	 was	 also	
effective	against	MDAH	2,774	and	SKOV3	ovarian	cancer	cell	lines	
resulting in 50% reduction of growth upon application of 8 µM	SFN	
(Bryant et al., 2010).

Previous research highlights the impact of SFN against ovar-
ian	 cancer	 cells	 of	 mouse	 that	 overexpressed	 AKT	 (Chaudhuri	
et	 al.,	 2007).	 Its	 inhibitory	 role	 is	 visible	 among	 OVCAR4	 and	
OVCAR5	 cells	 also	 at	 low	 level	 of	 AKT	 along	 with	 OVCAR3	 and	
SKOV3	cells	with	higher	level	of	AKT	(Kwon	et	al.,	2015).	Therefore,	
the	 effect	 of	 SFN	 seems	 to	 be	 independent	 of	 the	 levels	 of	AKT.	
Furthermore, bioavailability of SFN is also high so it can effec-
tively	get	absorbed	and	present	anticancer	source	in	the	body	(Hu	
et	al.,	2004;	Ye	et	al.,	2002).

4.9 | Cervical cancer

Cervical	cancer	(CC)	is	the	leading	cause	of	death	among	women	in	
the developing world (Bedell et al., 2020). Globally, it is considered 
as one of the lead causes of gynecological deaths (Islami et al., 2015). 
It is also regarded as the 6th regular malignancy among Taiwanese 
women	(Cheng	et	al.,	2012).	Patients	with	cervical	cancer	exhibit	dis-
seminated disease resulting in low survival rates (Siegel et al., 2012). 
Genetic predisposition, environmental factors, and in some cases 
human	papillomavirus	(HPV)	also	resulted	in	the	progression	of	cer-
vical complications among the patients. Generally, the exposure by 
HPV	is	counteracted	by	human	immune	system	but	when	survives	
it can lead to conversion of normal cells into precancerous cells, 
i.e., intraepithelial neoplasia. Nevertheless, in severe cases when 
virus	stays	 for	years	 it	progresses	 to	 invasive	cervical	cancer	 (Hsu	
et	al.,	2010;	Hung	et	al.,	2014;	Kasprzak	et	al.,	2017).

The	anti-	tumor	potential	of	SFN	was	reported	in	Cx,	CxWJ,	and	
HeLa	 cell	 lines	 with	 dose	 specificity.	 On	 comparative	 evaluation	
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with	 MTT	 method,	 significant	 reduction	 was	 observed	 in	 Cx sur-
vival	 rate	 and	 proliferation	 (Cheng	 et	 al.,	 2016).	 SFN	 is	 reported	
to delay the mitosis by down- regulating cyclin B1 and also dissoci-
ates	the	B1/CDC2	complex	through	GADD45ß	in	the	CC	cell	 lines	
(Cheng	et	al.,	2012).	Similarly,	it	also	reportedly	inhibits	the	cell	mul-
tiplication	by	apoptotic	and	chemo-	preventive	mechanisms	(Cheng	
et	al.,	2016;	Chinembiri	et	al.,	2014;	Sheth	et	al.,	2015).

SFN primarily adopts Nrf2 signaling pathway and other mech-
anisms	 to	deliver	 anticancer	effects	 (Hussain	et	 al.,	 2012).	Among	
different mechanisms reactive oxygen species (ROS) production in 
the promotion of apoptosis is also involved in prevention from cer-
vical cancer. It has been reported that SFN promotes the protective 
mechanism in healthy and normal cells while it blocks the factors 
responsible for tumors, their development and proliferation in can-
cerous	cells	(Briones-	Herrera	et	al.,	2018;	Sharma	et	al.,	2011).

4.10 | Bladder cancer

Among	the	top	ten	types	of	cancers,	bladder	cancer	contributes	to	
the 550,000 cases globally (Richters et al., 2019). Developed coun-
tries	contain	higher	burden	of	bladder	cancer	patients.	Urinary	blad-
der	 cancer	 (UBC)	 contributes	 to	 approximately	 3.0%	 of	 all	 cases,	
while	2.1%	of	all	cancer-	based	deaths	(Bray	et	al.,	2018).	Majorly,	im-
balance	in	gut	microbiota	contributes	to	carcinogenicity.	A	research	
work	involved	induction	of	N-	butyl-	N-	(4-	Hydroxybutyl)-	nitrosamine	
(BBN)	in	male	C57BL/6	mice	for	UBC.	SFN	affects	the	histological	
changes	in	the	UBC	cells	concluding	in	reduced	submucosal	capillar-
ies (Leone et al., 2017). SFN normalized the gut microbiota in BBN- 
induced mice and increased the butyric acid level in the colon along 

with repairing mucosal epithelium of both colon and cecum by tight 
junction protein and GLP2. The level of cytokines (IL- 6) and secre-
tory	immunoglobulin	A	in	the	bladder	of	mice	also	reduced	signifi-
cantly on SFN consumption (Saif et al., 1988; Su et al., 2018).

Cigarette	smoke	(aromatic	amines)	contributes	to	50%	of	UBCs.	
Non-	tobacco	users’	exposure	to	amines,	4-	aminobiphenyl,	and	ani-
lines	lead	to	10%	of	all	cases	in	UBCs	death.	Similarly,	phenacetin-	
derived	analgesics/medication	in	case	of	oral	pains	also	lead	to	UBCs	
(Witjes	et	al.,	2014).	Epidemiological	 studies	 indicate	 that	broccoli	
consumption	 reduced	 the	UBC	 risk	 up	 to	 39%	with	 2	 servings	 of	
broccoli	per	week	 (Michaud	et	 al.,	 1999,	2000,	2001).	 Similarly,	 in	
a meta- analysis of ten different clinical experiments concluding in 
the	reduction	of	overall	UBC	with	cruciferous	vegetables	consump-
tion (Liu et al., 2013). In vitro studies also support the reduction in 
BC	with	the	SFN	consumption	(Singh	&	Singh,	2012;	Zhang,	2010;	
Zhang et al., 2003).

Further research studies indicate the toxicity of SFN toward 
malignant urothelial cells among humans as compared to normal 
urothelium.	With	BIU87	bladder	 cancer	 cells	 SFN	down-	regulated	
NF- KB levels along with up- regulation of insulin- like growth factor- 
binding protein- 3 (IGFBP- 3) that increased incidences of apoptosis 
(Dang	 et	 al.,	 2014).	 Additionally,	 a	 research	 carried	 out	 in	 animal	
model once concluded toxic results of SFN on overdosing in case of 
bladder	hyperplasia.	However,	many	other	models	using	significantly	
higher doses in clinical trials did not result in any toxicity in the blad-
der	of	animal	models	(Akagi	et	al.,	2003).	Likewise,	SFN	also	report-
edly	 inhibited	 the	UBC	by	 reversing	 the	epithelial-	to-	mesenchyme	
transition	(EMT)	through	mRNA-	200c/ZEB1	axis	(Islam	et	al.,	2016).	
SFN	 in	 a	 dose-	dependent	 manner	 induced	 the	 EMT	 (E-	cadherin)	
along	with	down-	regulation	of	vimentin	(Huang	et	al.,	2018).	Current	

F I G U R E  7   Sulforaphane causes apoptosis and cell cycle arrest
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research	also	supports	the	impact	of	SFN	in	modulating	the	HDAC	
and	HATs	resulting	in	increased	phosphoric	activity,	reduced	histone	
H1	phosphorylation	in	bladder	cancer	cells	(Abbaoui	et	al.,	2017).

4.11 | Prostate cancer

Globally, prostate cancer is reportedly the second most abundant 
type	of	cancer	among	men	(Mohler	et	al.,	2016).	Even	with	intensive	
multimodal therapy, the metastatic prostate cancer remains largely 
incurable	(Wang,	Zhao,	et	al.,	2018).	Incorporation	of	SFN	in	prostate	
cancer	cell	lines	(PC-	3)	and	LNCaP	showed	induction	of	autophagy	
leading to lowered progression of cancer cells. It was also associated 
with up- regulating mechanism of autophagosomes of microtubule- 
associated	 protein	 1	 light	 chain	 (LC3).	 The	 cytoplasmic	 histone-	
associated	DNA	fragmentation	indicates	that	not	only	apoptosis	but	
also	the	release	of	cytochrome	c	was	prevented	(Clarke	et	al.,	2008;	
Herman-	Antosiewicz	et	al.,	2006).

The consumption of SFN results in ROS generation along with 
mitochondrial membrane disruption that is later followed by apop-
tosis and cytosolic release of cytochrome c. Similarly, SFN- induced 
ROS	 generation	 also	 results	 in	 depletion	 of	 GSH	 levels.	 This	 was	
confirmed for both intrinsic and extrinsic caspase cascades that is 
conducive of SFN role as a promising chemoprotective compound 
(Mokhtari	et	al.,	2018;	Singh	et	al.,	2004;	Yang	et	al.,	2016).	Some	
research	also	highlighted	the	role	of	long	noncoding	RNAs	(lncRNAs)	
in the management of prostate cancerous cells. SFN induced eight 
lncRNAs	 in	 reducing	 the	 prostate	 cancer	 cells	 linked	with	 dysreg-
ulation	 of	 the	 expressions	 including	 RP11-	57A19.2,	 LINC01351,	
LINC00883,	RP11-	700H6.1,	MIR22HG,	KB-	1732A1.1,	 LINC01059,	
and	 LINC01116.	 LINC00883,	 and	MIR22HG	were	 significantly	 al-
tered in all cells used in research with SFN incorporation in diet 
(Petryszak et al., 2016). The research also highlights the Nrf2 factor 
associated	with	MIR22HG	in	different	immunoprecipitation	studies	
(Beaver et al., 2017; Thimmulappa et al., ,2002, 2016).

Recent investigations were carried out to observe the transcrip-
tional changes in men suffering from prostate cancer were actively 
monitored.	After	12	months	of	glucoraphanin-	rich	broccoli	interven-
tion,	a	randomized	controlled	trial	Effect	of	SFN	on	prostate	CAncer	
PrEvention	 (ESCAPE)	 indicates	 the	decrease	 in	cancer	progression	
on effective consumption of glucoraphanin (Traka et al., 2019).

4.12 | Colon and colorectal cancer

Colon	cancer	is	reportedly	highest	in	developed	countries.	The	global	
burden	of	colon-	rectal	cancer	(CRC)	is	expected	to	rise	by	60%	more	
till	 2030	 (Arnold	 et	 al.,	 2017).	 At	 present,	 colon	 cancer	 is	 treated	
by surgery, radiation, chemotherapy, and through the combination 
of	radio-		and	chemotherapy.	However,	 results	still	 lead	to	unsatis-
factory improvement among patients (Bessler & Djaldetti, 2018; 
Nautiyal	 et	 al.,	 2011).	 Epidemiological	 studies	 have	 indicated	 that	
cruciferous vegetable consumption was associated with lower risk 

of	CRC	 (Pan	et	al.,	2018;	Thanikachalam	&	Khan,	2019;	Watanabe	
et al., 2018). SFN contributes to the anti- oxidant potential through 
Nrf2- Keap1 systems contributing to cytoprotective phenomena 
(Yang et al., 2016; Zhang et al., 2003).

Along	with	other	functions	discussed	previously,	SFN	also	con-
tributes to antibacterial activity preventing the activity of gastric 
H. pylori along with known gastric carcinogens (Fahey et al., 2019; 
Yagishita et al., 2019). Research indicates its role in maintaining 
healthy population of intestinal micro- flora thereby preventing colon 
cancers in mice and humans (Yanaka, 2017; Yanaka et al., 2019). 
Similarly, SFN also prevented colon cancer cells via epigenetic mod-
ulation	 of	 mRNA-	21	 and	 down-	regulation	 of	 human	 telomerase	
reverse	 transcriptase	 (hTERT).	 Regulation	 of	 HDAC,	 hTERT,	 and	
mRNAs	are	considered	effective	against	colon	cancer	cells	as	it	re-
duced	 the	 cell	 density,	 cell	 viability	 and	 caused	 apoptosis	 (Martin	
et al., 2018). SFN exerted a dose- dependent anti- tumor effect on 
the	CCS	in	vitro	HCT	116	through	G2/M	phase	arrest	and	also	be	
apoptosis of cell through caspase and mitochondrial- dependent sig-
nal mechanism (Liu et al., 2016).

Although	SFN	 is	well	 characterized	 for	anti-	tumor	potential,	 in	
vitro elucidation of all biological mechanisms behind the apoptosis 
needs	better	research	(Darkwa	et	al.,	2019).	Another	study	explored	
the	effect	of	SFN	on	mRNA	expression	in	case	of	Caco-	2	and	non-	
cancer	cells	lines	CCD-	481	through	small	RNA	clone	and	sequencing	
mechanism. It was later followed by Northern Blot validation exper-
iments that conclude its role in up- regulation of let- 7f- 5p and let- 
7g-	5p	 expression	 after	 24	hr	 in	Caco-	2	 cells.	However,	 this	 effect	
was	 not	 reported	 for	 CCD-	481.	 The	 process	 also	 down-	regulated	
the	miR-	29b-	3p	in	Caco	cells.	Two-	way	luciferase	assays	allowed	let-	
7f-	5p	mimic	 and	bound	 the	miRNA	 to	mRNA	 transcript	3’-	UTR	of	
25A	cell	cycle	division.	Therefore,	 it	was	hypothetically	concluded	
that	 let-	7f-	5p	 suppressed	 CDC25A,	 HMGA,	 and	 MYC	 (Dacosta	
et al., 2017). Scientific investigations have confirmed the proapop-
totic role of SFN in colon cancer cell resulting in reducing the via-
bility	of	HT29	and	Caco-	2	cells	(Lan	et	al.,	2017;	Lenzi	et	al.,	2014).	
SFN	is	not	only	chemoprotective	but	also	prevents	the	DNA	adduct	
formation along with decreased mutation rate. Similarly, it also acti-
vates proapoptotic pathway and regulates epigenetic gene control of 
CDKs,	p21,	Bax,	and	Nrf2	responsible	for	the	cancer	instigation	and	
its progression hence arresting the cell cycle progression (Juengel 
et	al.,	2017;	Royston	et	al.,	2017;	Xu	et	al.,	2006).

4.13 | Bone cancer

Among	bone	cancers,	osteosarcoma	is	the	primary	malignant	form.	It	
is considered as the eighth common type of cancer that leads to mor-
bidity among youngsters (Broadhead et al., 2011; Gill et al., 2013). 
The mortality rate is also linked to late diagnosis resulting in a 5- year 
survival rate with ongoing chemotherapy and surgical treatments 
(Osborne & Khanna, 2012). The impact of SFN was recorded for 
pro- proliferation and cryoprotective characteristics were observed 
for	canine	osteosarcoma	cell	line	in	D17,	OS	2.4,	and	HMPOS	(Rizzo	
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et al., 2017). The combination of SFN with radiation treatment was 
reportedly	 researched	 in	 LM8	 murine	 osteosarcoma	 cells	 (Sawai	
et	al.,	2013).	It	induced	apoptosis	by	G2/M	phase	arrest	by	suppress-
ing	ERK	and	AKT.	Another	study	reported	the	ability	of	SFN	in	creat-
ing	 instability	 in	 the	genomic	structure	of	MG63	osteosarcoma	by	
DNA	breakage,	mitotic	abnormalities,	nuclear	alterations,	and	clas-
togenicity.	 This	 consequently	 reduced	 the	 viability	 of	 micronuclei	
and enhances the formation of apoptotic bodies (Ferreira de Oliveira 
et	al.,	2014).

4.14 | Skin cancer

Radiations from the sunlight, chemical exposure, vulnerable ge-
netic profile, and some virus including papillomavirus are among 
the factors responsible for skin cancers (Penta et al., 2018; Prasad 
& Katiyar, 2017). Two main types of cancers have been identified 
as melanoma and non- melanoma cancer cells. Non- melanoma are 
further	 divided	 into	 basal	 cell	 carcinoma	 and	 squamous	 cell	 car-
cinoma	 (Penta	 et	 al.,	 2018).	Melanoma	 is	 the	most	 common	 type	
of	 cancer	 in	 the	 USA,	 with	 highest	 frequency	 reported	 to	 be	 in	
Caucasians	 (Chinembiri	 et	 al.,	 2014).	 Apoptosis	 induction,	 pre-
venting the proliferation of cell, and the metastasis inhibition are 
among	basic	 anticancer	 functions	 of	 SFN	observed.	Many	 studies	
have reported the effective activities of SFN on melanoma cells 
(Arcidiacono	et	al.,	2018;	Fisher	et	 al.,	2016;	Ramirez	et	 al.,	2018;	
Tahata et al., 2018).

Previous researches also support the role of SFN in the induc-
tion of apoptosis. It supported the up- regulation of caspase 3 and 
9, p53 protein, and Bax gene. Similarly, SFN also reportedly down- 
regulated	Bcl-	2,	 Bid,	 and	 caspase	 8	 (Hamsa	 et	 al.,	 2011;	 Rudolf	
et	al.,	2014).	The	anti-	metastatic	potential	of	SFN	in	murine	mela-
noma cancer therapy is also reported where it promotes metasta-
sis by activating cell- mediated immune response by up- regulating 
IL- 2 and interferon gamma (IFN- γ) along with down- regulating IL- 1 
β, IL- 6, TNF- α, and granulocyte- macrophage colony- stimulating 
factor	(GM-	CSF)	(Thejass	&	Kuttan,	2007;	Van	Eylen	et	al.,	2007).	
SFN	is	unstable	at	temperatures	between	60	and	90ºC,	with	short	
half-	life	and	reduced	bioavailability.	Albumin	microspheres	are	re-
portedly effective as drug delivery models in mice injected with 
B16 melanoma tumor. It has been found that SFN inhibited the 
tumor	growth	(Do	et	al.,	2010).	Moreover,	another	experimental	
research indicated higher therapeutic efficiency of SFN (approxi-
mately	10%)	when	delivered	via	magnetic	microspheres	(Enriquez	
et	al.,	2013).	Additionally,	SFN	is	associated	with	the	prevention	
of	UV-	induced	inflammation.	It	reacts	mainly	with	the	thiol	group	
to	 produce	 dithiocarbamate	 that	 consequently	 blocks	 redox-	
sensitive	DNA	binding	process	and	the	transactivation	of	NF-	κB. 
It also inactivates NF- κB by binding it with cysteine (Dinkova- 
Kostova et al., 2006; de Figueiredo et al., 2015). Similarly, it also 
regulates the glutathione, thioredoxin, and Ref- 1-  proteins consid-
ered important for NF- κB	functionality	(Alyoussef	&	Taha,	2019;	
Shibata et al., 2010).

5  | DIETARY REGIME USING 
CRUCIFEROUS VEGETABLES

Epidemiologically,	 provision	 of	 natural	 bioactive	moieties	 via	 con-
sumption of indigenous plant- based foods has been found to lower 
the	 oxidative	 stress-	mediated	 diseases	 (Câmara	 et	 al.,	 2021).	 In	
this regard, cruciferous vegetables including broccoli, cabbage, 
cauliflower, etc., are highly acknowledged for their prophylactic 
health effects (Table 1) due to the presence of a variety of bioac-
tive	 compounds	 (Houghton	 et	 al.,	 2013).	 Different	 glucosinolate	
molecules are reported in dietary crucifers; primarily, 3- butenyl and 
4-	pentenyl	 glucosinolate	 with	 hydroxylated	 forms	 are	 present	 in	
Chinese	cabbage	(B. rapa and B. oleracea) while 3- methylthiopropyl, 
3-	methylsulfinylpropyl,	 2-	propenyl,	 and	 4-	methylsulfinylbutyl	 are	
found abundantly in red and white cabbage, cauliflowers, and broc-
coli.	Watercress	 (Rorippa spp.) is considered as a major source of 
phenylethyl glucosinolate while rockets (Diplotaxis and Eruca spp.) 
contain	4-	methylthiobutyl	glucosinolate	(Juge	et	al.,	2007).

Brassica vegetables provide an array of functional compounds, 
but SFN has grabbed significant attention due to its reported ef-
fectivity against different types of cancers. It has been discussed 
earlier that the SFN is made from glucoraphanin and the myros-
inase enzyme is responsible for this conversion. The activity of 
the enzyme is highly vulnerable to processing conditions like tem-
perature. Domestic processing methods damage and expose the 
phytochemicals	 to	 different	 modifications	 impacting	 the	 quality	
and effectivity. For instance, extensive cooking processes involv-
ing high temperature result in damaging SFN and other glucosino-
lates ultimately lowering their effectivity (Jones et al., 2010; Tabart 
et	al.,	2018;	Wachtel-	Galor	et	al.,	2008;	Zhang	&	Hamauzu,	2004;	
Zhong et al., 2015). Furthermore, glucosinolates are water- soluble 
entities, so boiling the vegetables may leach these active compounds 
in boiling water. Recent studies are focusing more on the methods 
that increase the bioavailability of such beneficial compounds using 
appropriate cooking methods. In case of broccoli and red cabbage, 
steaming seems to be most effective in preserving the nutritional 
profile	of	the	vegetables	(Murador	et	al.,	2016;	Tabart	et	al.,	2018).	
Steaming and microwaving have shown to preserve SFN and in some 
cases enhance the SFN content attributed to conversion of gluco-
sinolates to SFN (Ghawi et al., 2013; Tabart et al., 2018). In this re-
gard, only mild heat treatments are recommended for cruciferous 
vegetables.

The broccoli can be consumed raw or freshly harvested alongside 
mildly	processed.	Heating	decreases	epithiospecifier	protein	result-
ing	in	higher	production	of	SFN	in	broccoli	(Matusheski	et	al.,	2004).	
Chopping	the	broccoli	 releases	myrosinase	that	converts	 the	gluc-
oraphanin to SFN. The same effect may also be obtained by thor-
oughly chewing the vegetables during consumption. It has also been 
observed that long- term storage (10 days) reduces glucoraphanin 
(80%) content in broccoli. Other than broccoli, mustard seed pow-
der, daikon radish, wasabis, arugula, or coleslaw are also known for 
their	myrosinase-	rich	constituents	(Higdon	et	al.,	2007;	Matusheski	
et	al.,	2004;	Nandini	et	al.,	2020).
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Alongside	processing	methods,	the	frequency	and	composition	
of a diet with vegetables are important to consider for obtaining max-
imum benefit from their beneficial compounds. Studies conducted 
previously indicate that 3– 5 servings of cruciferous vegetables are 
associated with strongest inverse relationship with the cancer cell 
formation	in	the	body	(Jeffery	&	Keck,	2008;	Mokhtari	et	al.,	2018).	
Likewise, women consuming more than 5 servings of cruciferous 
vegetables	 per	 week	 showed	 lower	 incidence	 of	 non-	Hodgkin's	
lymphoma (Zhang et al., 2000). Furthermore, a case- control study 
indicated inverse relation between consumption of cruciferous veg-
etables and prostate cancer (Kolonel et al., 2000). Similarly, other 
types of cancers have also been found negatively correlated with 
consumption	 of	 cruciferous	 vegetables	 (Mokhtari	 et	 al.,	 2018).	
Large	populations-	based	systematic	 studies	are	 required	 to	estab-
lish	minimum	dietary	frequency	of	cruciferous	vegetables	to	avoid	
any adverse effects. Based on available data, at least 5 servings of 
cruciferous vegetables per week may be recommended in routine 
as a prophylactic measure to prevent onset of metabolic disorders 
alongside maintain active and healthy lifestyle practices.

In our opinion, sulforaphane possesses significant potential to 
ameliorate risk of cancer onset and in particular cases may be con-
sidered	as	a	potent	therapeutic	agent.	However,	the	limiting	factors	
such as conversion of glucoraphanin by the action of myrosinase to 
sulforaphane and losses during cooking can significantly influence 
its biological availability and effectivity. Furthermore, the epidemi-
ological studies have mostly been conducted in relation to overall 
consumption patterns of the cruciferous vegetables where the ac-
tual content of sulforaphane may vary in different meals and vari-
ous confounders have not yet been explored like ethnicity, regional 
variations, seasonal and agricultural practices adopted to produce 
cruciferous	vegetables,	etc.	Alongside,	the	synergistic	or	antagonis-
tic effectivity of sulforaphane is yet to be investigated and needs 
extensive studies before finally designing a cancer therapeutic drug. 
Moreover,	a	comprehensive	qualitative	and	quantitative	metanaly-
sis	is	needed	to	establish	the	effective	meal	frequencies	and	clinical	
doses to obtain positive outcomes from this bioactive agent.

6  | CONCLUSIONS

Sulforaphane is a potential bioactive compound with significant 
anticancer activities. Numerous studies confirmed its preventive 
role	in	different	types	of	cancer.	However,	the	biological	availability	
and site- specific bioactivity are necessary to deliver such antican-
cer	 properties.	Myrosinase	 is	 degraded	 when	 cruciferous	 vegeta-
bles containing glucoraphanin are heated at higher temperatures, 
only the gut microbiota are the remaining choice to convert it to 
sulforaphane.	Moreover,	 bioavailability	may	 possibly	 be	 enhanced	
using different delivery models, so a comprehensive research is de-
sired	in	designing	such	models.	Also,	great	interest	exists	in	develop-
ing synthetic analog of this compound and testing its comparative 
bio- efficacies. Nutrigenomic studies linking the role of genetic basis 

of an individual with the consumption of cruciferous vegetables can 
also be explored to advise personalized diet- plans for which novel 
research	models	are	required.	Furthermore,	unveiling	and	correlat-
ing the hidden mechanisms involved in delivering anticancer effects 
with consumption of sulforaphane- precursor and/or sulforaphane- 
rich diets may direct future research in developing safer diet- based 
regimen in prevention of cancer insurgence.
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